
Reference Card
FOUNDATIONS

Note : P3 Adaptive LLC ALLOWS and ENCOURAGES reprinting and/or

electronic distribution of this reference material, at no charge, provided:

1) it is being used strictly for free educational purposes and 2) it is

reprinted or distributed in its entirety, including all pages, and without

alteration of any kind.

Power BI and PowerPivot:
How the DAX Engine Calculates Measures

1

2

3

4

5

6

If applicable <�lters> from CALCULATE(), adding/removing/modifying coordinates and
producing a new �lter context.

In the �lter context to each of the respective tables (Calendar and Products in this example).
This results in a set of “active” rows in each of those tables.

If the �ltered tables (Calendar and Products) are Lookup tables, follow
relationships to their related Data tables and �lter those tables too. Only Data rows related to
active Lookup rows will remain active.

Once all �lters are applied and all relationships have been followed, evaluate the arithmetic -
SUM(), COUNTROWS(), etc. in the formula against the remaining active rows.

The result of the arthmetic is returned to the current measure cell in the pivot (or dashboard,
etc.), then the process starts over at step 1 for the next measure cell.

IMPORTANT: Every single measure cell is calculated independently,
as an island! (That’s right, even the Grand Total cells!) So when a
measure returns an unexpected result, we should pick one cell
and step through it, starting with Step 1 here...

Detect Filter Coordinates of Current Measure Cell:
Calendar(Year)=2019, Products(Model)=”Road-150”)
Those are the inital �lter context.

T: +1 800.503.4417 | E: simple@p3adaptive | W: www.p3adaptive.com

1

Data Table (Ex: Sales)

ProductsCalendar

Calculate Alters Filter Context

Apply the Coordinates

Filters Follow the Relationship(s)

Evaluate the Arithmetic

Return Result

T: +1 800.503.4417 | E: simple@p3adaptive | W: www.p3adaptive.com

Exercises for Step 1 (Filter Context) of DAX Measure Evaluation Steps
In each of the 9 pivots below, identify the �lter context (the set of coordinates from the pivot) for the circled cell. (We
�nd that coordiante identi�cation often trips people up, hence this exercise).
In 1-4, the Region(Country) column is on Rows, & Products(Category) on Columns. (Total Sales) is on Values.

In #5, we’ve swapped Region(Country) from Rows to Columns, and Products(Category) from
Columns to Rows. We’ve also turned o� display of grand totals.

2

1

2

3

4

5

Exercises for Step 1 (Filter Context) of DAX Measure Evaluation Steps
In 6-8, Region(Continent) and Region(Region) are on Rows. Customers(Gender) is on Report Filters. In 6 and 7,
Customers(Gender) Is not �ltered, but in 8, it is �ltered to “F”. In 6-8, (Total Sales) and (Orders) are on Values.

1) Region(Country) = “France”, Products(Category) = “Bikes”

2) Region(Country) = “Germany”

3) Products(Category) = “Accessories”

4) No Filters

5) Same as #1!

In 9, Region(Continent) is a Slicer. Consumers(Gender) is on Rows. (Orders) is on Values.

6) Region(Continent) = “North America”, Region(Region) = “Northwest”

7) Same as #6!

8) Region(Continent) = “North America”, Customers(Gender) = “F”

9) Same as #8!

Answers

6

8

9

7

T: +1 800.503.4417 | E: simple@p3adaptive | W: www.p3adaptive.com

3

Commonly-Used DAX Functions and Techniques

Need Training? Advice? Or Help with a Project?
Contact Us:

Simple@p3adaptive.com

T: +1 800.503.4417 | E: simple@p3adaptive | W: www.p3adaptive.com

4

[MeasureName)
SUM(Table[Column])
Any measure name or valid formula for a measure

<measure expression>:

CALCULATE(<measure expression>, <�lter1>, <�lter2>, ... <�lterN>)

CALCULATE () Function

“Simple”<�lter>:

Advanced<�lter>:

Notes:

Sales[TransactionType]=1
Products[Color]="Blue"
Calendar[Year]>=2009
Sales[TransType]=1 || TransType]=3

ALL(…)
FILTER(…)
DATESBETWEEN(…)
Any other function that modi�es �lter context

Raw <�lter>'s override (replace) �lter context from pivot
Raw <�lter>'s must be Table[Column] <operator> <�xed
value>
Multiple <�lter>'s arguments get AND'd together

The Name of a Table, or any of the below…
VALUES(Table[Column]) - unique values of Table[Column] for
current pivot cell
ALL(Table) or ALL(Table[Column])
Any expression that returns a table, such as DATESYTD()
Even another FILTER() can be used here for instance

<table expression>:

FILTER(<table expression>, <single rich �lter>)

FILTER () Function

Table[Column1] >= Table[Column2]
Table[Column] <= [Measure]
[Measure1] <> [Measure2]
<true/false expr1> && <true/false expr2>
Any expression that evaluates to true/false

<rich �lter>:

Commonly used as a <�lter> argument to CALCULATE()
Useful when a richer �lter test is required than “simple” �lters can do
Never use FILTER when a “simple” CALCULATE() <�lter> will work
Slow and eats memory when used on large tables
Use against small (Lookup) tables for better performance
Advanced usage: use anywhere a <table expr> is required

Notes:

Produces a temporary, single-column table during formula
evaluation
That table contains ONLY the UNIQUE
values of Table[Column].

EX: CALCULATE(<measure>,
FILTER(VALUES(Customers[Postal Code]),]),…))

That allows us to iterate as if we had a PostalCode table, even
though we don’t! And then the formula above calculates
<measure> only for those Postal Codes that “survive” the
<�lter expr> test inside the FILTER function. And therefore
only includes the customers IN those postal codes!

1-column table, unique:
(Most common usage)

Restoring a �lter:
(2nd most common
usage)

VALUES(Table[Column])

VALUES () Function

As a <�lter> argument to CALCULATE()
Removes �lters from speci�ed table or column(s)
Strips those tables/columns from the pivot's �lter context

Basic usage:

ALL(<table>) or ALL(Table[Col1], Table[Col2], …Table[ColN])

ALL () Function

Advanced usage: Technically, ALL() returns a table
So it is also useable wherever a <table expr > is required
…such as the �rst argument to FILTER()

Substitute DATESQTD or DATESMTD for Quarter or Month to
date

Qtr or Month to: date:

Year to Date: CALCULATE(<measure>, DATESTYD(Calendar[Date])

Common Date Calculations

Previous Month: CALCULATE(<measure>, DATEADD(Calendar[Date], -1, Month)

30-day Moving Avg: CALCULATE(<measure>, DATESINPERIOD(Calendar[Date],
MAX(Calendar[Date]), -30, Day)/30

Prev QT/Year/Day: Substitute “Quarter” or “Year” or “Day” for “Month” as last
argument

=CALCULATE

When Your Biz Calendar is Too Complex for the Built-In Functions

Time Intelligence with Custom Calendar

=SUMX(VALUES(Table[Column], <original measure>)

Forcing Grand/Sub Totals to Be the Sum of Their "Parts"

(<measure expr>, FILTER(ALL(<Custom Cal Table>), <custom �lter>),
<optional VALUES() to restore �lters on some Cal �elds>)

=CALCULATE([Sales],

=CALCULATE([Sales],

FILTER(ALL(Cal445), Cal445[Year]=MAX(Cal445[Year])-1))

FILTER(ALL(Cal445), Cal445[Year]=MAX(Cal445[Year])-1),VALUES
(Cal445[MonthOfYear]))

Alternative to Nested IF’s!
SWITCH() Function

=SWITCH(<value to test>, <if it matches this value>, <return this value>,
<if it matches this value>, <return this value>,
…more match/return pairspairs…,
<if no matches found, return this optional “else” value>)

CALCULATE([M], ALL(Table), VALUES(Table[Col1]))
…is roughly equiv to CALCULATE([M],
ALLEXCEPT(Table,Table[Col1]))

Note: VALUES(Table[Column]) returns �ltered list even if
Table[Column] isn't on pivot!

(Where the values of Table[Column] are the “small pieces” that need to be
calculated individually and then added up.)

=CALCULATE([Measure],FILTER(<table>, Table[Col]=EARLIER(Table[Col])-1))

=CALCULATE(AVERAGE(Tests[Score]),FILTER(Tests, Tests[ID]=EARLIER
(Tests[ID])-1))

Calc Columns That Reference "Previous" Row(s)

=IF(HASONEVALUE(Table[Column]), <measure expr for non non-totals>, BLANK())
Suppressing Subtotals/Grand Totals

RANKX(<table expr>, <arithmetic expression>, <optional alternate arithmetic expression>,
<optional sort order �ag>, <optional tie tie-handling �ag>)

RANKX() Function

Returns BLANK() Cells on “ Div by Zero”, No IF() or IFERROR() required!
=DIVIDE(<numerator>, <denominator>, <optional val to return when div by zero>)

DIVIDE Function

<table expression>: RANKX(ALL(Table[Column]), <numericalexpr>)
EX: RANKX(ALL(Products[Name]), [TotalSales])

Ascending Rank Order:

EX: RANKX(ALL(Products[Name]), [TotalSales],,1)“Dense” Tie Handling:
EX: RANKX(ALL(Products[Name]), [TotalSales],,,Dense)

Data Tables

T: +1 800.503.4417 | E: simple@p3adaptive | W: www.p3adaptive.com

5

- Typically, TALL (Many Rows)

- MOSTLY Dates and Numbers

- Do MATH against it (E.g., SUM, AVERAGE, MIN,

MAX, etc…)

- Fast changing (Updated Often)

- MAY contain Time Data (E.g,. Order Date, Record

Time, etc…)

- The MANY side of a relationship

Lookup Tables

Under “Ideal” Conditions, Data and Lookup Tables are Used Like THIS:

Every �eld used in these places comes from Lookup tables.

And every �eld in the Values Area Comes from Data tables.

- Typically, WIDE (Many Columns)

- MOSTLY Text

- LOOKUP Information (E.g., Name, Address,

Description, etc…)

- SLOW Changing (Updated Less Often)

- Does NOT typically contain Time Data

- The ONE side of a relationship

(Note that these are the places that contribute to �lter context

during measure calculation!)

(Although we DO occasionally write measures against Lookup

tables, such as days elapsed, products o�ered, etc.

Note:

• Data tables are “spliced together” ONLY by

sharing one or more Lookup tables

• Now follow the �eld list guidelines above and you

can compare Budget v Actuals (for instance) in a

single pivot!

• Data tables are never related directly to each

other!

Also:

• Useful trick: Arrange Lookup tables “up high” on

the diagram and Data tables “down low.”

• This lets us envision �lters �owing “downhill”

across relationships (relationships are “1 1-way”)

T: +1 800.503.4417 | E: simple@p3adaptive | W: www.p3adaptive.com

6
Make the formula font bigger!

NEVER write the same formaula twice!

When writing measures/calc �elds:

Measures (Calculated Fields) Are:

Rename after import! NEVER Use Columns in Pivot Values Area

Calculated Columns Are:

[Total Sales]:= SUM(Table[Amount]) [Total Cost]:= SUM(Table[Cost])

Table[Column] [Column] [Measure] Table[Measure]

Insert New Lines in Formulas:

(Hold CTRL key down and roll mouse wheel forward)

1) Always INCLUDE table names on column references.

YES

YES

YESNO

NO

NO

=CALCULATE([Total],Table[Column]=6)

2) Always EXCLUDE table names when referencing other measures.

By following this convention, you will ALWAYS immediately know the di�erence between a measure and a column reference, on sight,

and that’s a BIG win for readability and debugging.

For example, you should de�ne basic measures like these, even for “simple” calculations like SUM:

And then references those measures whenever you are tempted to rewrite the SUM in another measure:

(But when writing a calc column, it is acceptable to omit the table name from a column reference, since you

rarely reference measures in calc columns.)

[Total Margin]:=

[Total Sales] – [Total Cost]

[Total Margin]:=

SUM(…) – SUM(…)

[Year to Date Sales]:=

CALCULATE([Total Sales], DATESYTD (Dates[Date])

[Year to Date Sales]:=

CALCULATE (SUM(...), DATESYTD(Dates[Date])

1. Used in cases when a single row can’t give you the answer

(typically aggregates like sum,

2. Only “legal” to be used in the Values area of a pivot

3. Never pre pre-calculated

4. ALWAYS re re-calculated in response to pivot changes – slicer or

�lter change, drill down, etc.

5. Return di�erent answers in di�erent pivots

6. Not a source of �le size increase

7. “Portable Fprmulas!!”

Overly-long and/or cryptically cryptically-named tables and

columns make your formulas harder to read AND write, and since

Power Pivot 2010 and 2013 don’t �x up formulas on rename, it

pays to rename immediately after import.

(Write the Measure/Calc Field Instead)

1. Used to “stamp” numbers or properties on each row of a table

2. “Legal” on row/column/�lter/slicer of pivots

3. Useful for grouping and �ltering, for instance

4. Also usable as inputs to measures

5. PrePre-calculated and stored – making the �le bigger

6. NEVER re re-calculated in response to pivot changes

7. Only re re-calculated on data source refresh or on change to

“precedent” (upstream) columns

(See re-use & maintenance bene�ts in DAX Formulas for

Power Pivot , Ch6)Category

ServiceCalls

Components

szCategoryName

vsIncomingServiceCalls

Components
NO

NO

NONO

YES

YES

YESYES

NONO

YES

NONOYES NONOYES

Reducing File Size

T: +1 800.503.4417 | E: simple@p3adaptive | W: www.p3adaptive.com

7

Calculated Column Notes

Avoid “Multi-Hop” Lookups (if Possible)

Words of Wisdom

1 MB 5 MB 25 MB 125 MB

Power Pivot, Power BI Designer, and SSAS Tabular all store and compresses data in a

“column stripe” format, as pictured here.

Each column is less compressed than the one before*it. (* The compression order of the

columns is auto auto-decided by the engine at import time, and not something we can see

or control.)

This column-oriented storage is VERY unlike traditional

�les, databases, and compression engines.

Sometimes, a single column is “responsible” for a large fraction of the �le’s size (like the

125 MB pictured here.)

One column = 80% of total size!

1. Calc columns bloat the �le more than columns imported from a data source.

2. So consider implementing the calc column in the database (or use Power Query), then import it.

3. Unlike calc columns, measures do NOT add �le size!

4. So in “simple arithmetic” cases like [Pro�t Margin], it’s best to just subtract one measure from another ([Sales]–[Cost]), and avoid adding a

calc column to perform the subtraction (which you’d then SUM to create your measure).

1. If your �le size is not a problem, don’t worry about ANYTHING on this page. These tips are just for when you DO have a problem :)

2. The smaller the table is in terms of row count, the less these tips and tricks matter. A few extra columns in a a10k -row table are no big

deal, but ONE extra column in a million million-row table sometimes IS.

3. So focus on Data tables. Lookup tables = less crucial.

4. Large �les also eat more RAM. If your server is strained or 32 32-bit Excel breaks down, reduce �le size.

Combine “chained” lookup tables into one table: Lookup 2 Combined Lookup

Lookup 1

Data Table

YESNO

Separate Lookup Tables O�er BIG File Size Savings

The table pictured above combines Data table columns (OrderDate, CustomerKey, ExtendedAmount , and ProductKey) with

columns that should be “outsourced” to a Lookup table (ProductName, StandardCost , Color, and ModelName can all be

“looked up” from the ProductKey).

Order Date CustomerKey

ExtendedAmount
ProductKey ProductName StandardCost

Color ModelName

Data Table

NO

YESYESNO

T: +1 800.503.4417 | E: simple@p3adaptive | W: www.p3adaptive.com

“Unpivot” ALSO O�ers Big File Size Savings

Instead, split the Lookup-

speci�c columns out into a

separate Lookup table, and

remove duplicate rows (in that

Lookup table) so that we have

just one row per unique

ProductKey.

Duplicate removal makes a relationship possible with the

Data table, AND makes the Lookup table small in terms of

row count.

Our “big” table now has signi�cantly fewer columns. On

net, our �le is potentially now MUCH smaller – because our

largest table (Data table) has shed multiple columns. The

small Lookup table is not signi�cant, even if it contains

50+ columns.

(Duplicate removal is performed in the database, or

using Power Query – see Power Pivot Alchemy, chapter 5

for an example).

In the case of dates or months, this also removes the need for tedious formula repetition, AND enables time intelligence calcs.

This “unpivot ” transformation results in increased rows but fewer columns. Counterintuitively this can yield VERY signi�cant

�le size reduction. (See Power Pivot Alchemy, Ch 5, for an example of performing this transformation with Power Query).

8

Order Date

RELATIONSHIP

YES

YES

NO

NO

T: +1 800.503.4417 | E: simple@p3adaptive | W: www.p3adaptive.com

9

In this case you will need to use CALCULATE to write your

“base” measures. EX:

CALCULATE(SUM(Table[Amount]),

Table[Amount Type]=“Refunds”)

What Makes a Valid Calendar/Dates Table?

Must contain a column of actual Date data type, not just text or a number that looks like a date.

2. That Date column must NOT contain times – 12:00 AM is “zero time” and is EXACTLY what you want to see.

3. There CANNOT be “gaps” in the Date column. No skipped dates, even if your business isn’t open on those days.

4. Must be “Marked as Date Table” via button on the Power Pivot window’s ribbon (not applicable in Power BI Desktop).

5. May contain as many other columns as desired. Go nuts :)

6. Should not contain dates that “precede” your actual data – needless rows DO impact performance.

7. You MUST then use this as a proper Lookup table – don’t use dates from your Data tables on Rows/Columns/Etc.!

YES YES

(Slightly) Advanced Concept: Row Context

Exception: Filter Context in Calc Columns

Exception: Row Context in Measures

(Slightly) Advanced Concept: Filter Context

• You HAVE a Row Context in a Calculated Column.

• But you do NOT have a Row Context in a Measure (Calculated Field)

• A calc column is calculated on a row row-by-row basis, so there’s one row “in play” for each

evaluation of the formula.

• So =[Column] resolves to a single value (the value from “this row”), w/out error.

• “The current row” is called Row Context

• You may only reference a “naked’ column (naked = no aggregation fxn), and have it resolve

to a single number, date, or text value when you have a Row Context.

• You HAVE a Filter Context in a Measure / Calc Field.

• But you do NOT have a Filter Context in a Calc Column.

• Each cell in a Pivot’s values area is calculated based on the �lters (coordinates) speci�ed

for that cell.

• Those �lters resolve to a set of multiple rows in the underlying data tables, rather than a

single row.

• =[Column] is therefore illegal as a formula, or as part of a formula where a single value is

needed.

• So this is why aggregation functions are required in measures – to “collapse” multiple values

into one.

• Aggregation functions like SUM *always* reference the Filter Context

• Since there is no Filter Context in a calc column, =SUM([Column]) will return the sum of the ENTIRE column – you get the

same answer all the way down.

• But you can tell the DAX engine to use a Row Context as if it were ALSO a Filter Context, by wrapping the aggregation

function in a CALCULATE.

• EX: =CALCULATE(SUM[Column])) “respects” the context of each row, AND also relationships

• So in a Lookup table, you can use CALCULATE(SUM(Data[Col])) to get the sum of all “matching” rows from the related Data

• Furthermore, the DAX engine always “adds” a CALCULATE “wrapper” whenever you reference a Measure.

So =[MySumMeasure] ALSO respects Row Context and Relationships.

• Certain functions step through tables one row at a time, even when used within a Measure.

• Those “iterator” functions are said to create Row Contexts during their operation.

• Ex: FILTER(tabletable, expr) and SUMX(tabletable, expr)

• In both examples, you CAN reference a column, within the expr argument, and use that column as a single

value, within the expr argument.

• Note however that the column MUST “come from” the table speci�ed in the table argument.

• Also note that this Row Context only exists within the evaluation of the iterator function itself (FILTER, SUMX, etc.) and

does NOT exist elsewhere in the measure formula.

T: +1 800.503.4417 | E: simple@p3adaptive | W: www.p3adaptive.com

10

